Draw Samples from a Gaussian Mixture Distribution
Source:R/draw_sample_mixture.R
draw_sample_mixture.Rd
Draws exemplary samples with a certain effect size for the sequential one-oway ANOVA or the sequential t-test, see Steinhilber et al. (2023) doi:10.31234/osf.io/m64ne
Arguments
- k_groups
number of groups (levels of factor_A)
- f
Cohen's f. The simulated effect size.
- max_n
sample size for the groups (total sample size = max_n*k_groups)
- counter_n
number of times the function tries to find a possible parameter combination for the distribution. Default value is set to 100.
- verbose
TRUE
orFALSE.
Print out more information about the internal process of sampling the parameters (the internal counter that was reached, some additional hints and the drawn parameters for the Gaussian Mixture distributions.)
Examples
set.seed(333)
data <- sprtt::draw_sample_mixture(
k_groups = 2,
f = 0.40,
max_n = 2
)
data
#> y x
#> 1 -0.35195917 1
#> 2 0.65107923 2
#> 3 1.13464217 1
#> 4 0.06825929 2
data <- sprtt::draw_sample_mixture(
k_groups = 4,
f = 1.2, # very large effect size
max_n = 4,
counter_n = 1000, # increase of counter is necessary
verbose = TRUE # prints more information to the console
)
#> Internal counter reached = 54
#>
#> group1:
#> mean1 = -1.99074652277088, mean2 = -0.428610482246108,
#> sigma1 = 0.834923571040213, sigma2 = 0.287694501108814
#>
#> group2:
#> mean1 = 1.23360638346966, mean2 = 0.129657848600828,
#> sigma1 = 1.05769847648328, sigma2 = 0.521462126165875
#>
#> group3:
#> mean1 = -2.04772209975713, mean2 = -0.141818342492629,
#> sigma1 = 0.424153872448029, sigma2 = 0.0621202584498169
#>
#> group4:
#> mean1 = 2.60899963472551, mean2 = 0.636633580470748,
#> sigma1 = 0.224572574962626, sigma2 = 0.0667325451814857
data
#> y x
#> 1 -3.5762655 1
#> 2 0.7385727 2
#> 3 -0.1367248 3
#> 4 0.6237656 4
#> 5 -0.7708177 1
#> 6 1.0060454 2
#> 7 -1.7081033 3
#> 8 0.6918255 4
#> 9 -2.4084128 1
#> 10 0.1284941 2
#> 11 -1.9372623 3
#> 12 2.5216276 4
#> 13 -2.0195175 1
#> 14 -0.1744742 2
#> 15 -2.1017450 3
#> 16 0.6802637 4