Usage
plot_anova(
anova_results,
labels = TRUE,
position_labels_x = 0.15,
position_labels_y = 0.075,
position_lr_x = NULL,
position_lr_y = NULL,
font_size = 25,
line_size = 1.5,
highlight_color = "#CD2626"
)Arguments
- anova_results
result object of the seq_anova() function (argument must be of class
seq_anova_results).- labels
show labels in the plot.
- position_labels_x
Numeric value controlling the horizontal position of the decision labels ("Accept H0" / "Accept H1"). The value is interpreted as a proportion of the maximum sample size
N, i.e., the labels are placed atx = N * position_labels_x. Defaults to0.15, which places the labels near the left side of the plot.0.5places the labels in the center.- position_labels_y
Numeric value controlling the vertical offset of the decision labels from the decision boundaries. The value is multiplied by the maximum absolute log–likelihood ratio (
max(|lr_log|)) to obtain the vertical distance between the boundary lines and the corresponding text. Larger values move the labels further away from the boundary lines. Defaults to0.075.- position_lr_x
Optional numeric value specifying the x-coordinate of the LR label in data units (i.e., on the sample size axis). If
NULL(default), the LR label is placed at the sample size where the highlighted point occurs: at the stopping sample size if a decision was reached, or at the final sample size otherwise.- position_lr_y
Optional numeric value specifying the y-coordinate of the LR label in data units (i.e., on the log–likelihood ratio axis). If
NULL(default), the LR label is placed on the horizontal axis (y = 0) when a decision was reached early. If no decision boundary was crossed, the LR label is placed slightly above or below zero, depending on the sign of the final log–likelihood ratio, so that the label does not overlap the highlighted point.- font_size
font size of the plot.
- line_size
line size of the plot.
- highlight_color
highlighting color, default is "#CD2626" (red).
Examples
# simulate data for the example ------------------------------------------------
set.seed(333)
data <- sprtt::draw_sample_normal(3, f = 0.25, max_n = 22)
# calculate the SPRT -----------------------------------------------------------
anova_results <- sprtt::seq_anova(y~x, f = 0.25, data = data, plot = TRUE)
# plot the results -------------------------------------------------------------
# default settings
sprtt::plot_anova(anova_results)
# variant 1
sprtt::plot_anova(anova_results,
labels = TRUE,
position_labels_x = 1.1,
position_labels_y = 0.1,
position_lr_x = 70,
position_lr_y = 2,
font_size = 25,
line_size = 2,
highlight_color = "green"
)
# variant 2
sprtt::plot_anova(anova_results,
labels = TRUE,
position_labels_x = 0.05,
position_labels_y = 0.3,
position_lr_x = 70,
position_lr_y = 3.5,
font_size = 25,
line_size = 2,
highlight_color = "darkred"
)
# no labels
sprtt::plot_anova(anova_results,
labels = FALSE
)
# custom additions
sprtt::plot_anova(anova_results) +
ggplot2::geom_vline(xintercept = 66, linewidth = 1, linetype = "dashed")
# further information ----------------------------------------------------------
# run this code:
vignette("one_way_anova", package = "sprtt")
#> Warning: vignette ‘one_way_anova’ not found
